Álgebra Linear

Aula 03: Transformações lineares

Kelvin Rafael Duarte Machado

setembro de 2025

Transformação linear

Sejam E, F espaços vetoriais. Uma transformação linear $A: E \to F$ é uma correspondência que associa a cada vetor $v \in E$ um vetor $A(v) = A \cdot v = Av \in F$ de modo que valham para quaisquer $u, v \in E$ e $\alpha \in \mathbb{R}$, as relações:

$$A(u + v) = Au + Av,$$

 $A(\alpha \cdot v) = \alpha \cdot Av$

O vetor Av chama-se a imagem de v pela transformação A.

As transformações lineares $A: E \to E$ do espaço vetorial E em si mesmo são chamadas operadores lineares em E.

Por sua vez, as transformações lineares $\varphi: E \to \mathbb{R}$, com valores numéricos, são chamados funcionais lineares.

Núcleo e imagem

A imagem de A é o subconjunto $Im(A) \subset F$, formado por todos os vetores $w = Av \in F$ que são imagens de elementos de E pela transformação A. O núcleo da transformação $A: E \to F$ é o subconjunto N(A) dos vetores $v \in E$ tais que Av = 0.

Forma matricial

$$Av_j = a_{1j}w_1 + a_{2j}w_2 + \cdots + a_{mj}w_m = \sum_{n=1}^m a_{ij}w_i$$

Assim, a transformação linear $A: E \to F$ juntamente com as bases $V \subset E$ e $W \subset F$ determinam uma matriz $\mathbf{a} = [a_{ij}] \in M(m \times n)$ chamada a matriz de A relativamente a essas bases (ou nas bases V, W)

$$Av_j = \sum_{i=1}^n a_{ij}v_i, \quad (j=1,\ldots,n).$$

Transformações matriciais

Um sistema de equações lineares pode ser escrito na forma de matricial:

$$A\mathbf{x} = \mathbf{b}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Transformações matriciais

Exemplos:

• Transformação do \mathbb{R}^4 para o \mathbb{R}^3 :

$$\begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Transformação nula

$$A_0(\mathbf{x})=0\mathbf{x}=\mathbf{0}$$

Operador identidade

$$A_1(\mathbf{x}) = I\mathbf{x} = \mathbf{x}$$

Operadores de rotação, reflexão e projeção

ullet Rotação pelo ângulo heta

$$w_1 = x \cos \theta - y \sin \theta$$

$$w_2 = x \sin \theta + y \cos \theta$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Reflexão no eixo y

$$A(x,y) = (-x,y)$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Reflexão no eixo x

$$A(x,y) = (x, -y)$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Projeção ortogonal sobre o eixo x

$$A(x,y) = (x,0)$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Operadores de dilatação, contração e cisalhamento

• Contração de fator k em \mathbb{R}^2

$$(0 \le k \le 1)$$

ullet Dilatação de fator k em \mathbb{R}^2

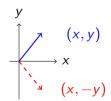
$$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

• Cisalhamento de \mathbb{R}^2 de fator k na direção x

$$A(x,y) = (x + ky, y)$$
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

Transformações em \mathbb{R}^2

$$(-x,y) \xrightarrow{\kappa} (x,y)$$
Reflexão em y



Reflexão em x

Espaço dual

Escreve-se E^* em vez de $\mathcal{L}(E,\mathbb{R})$ para representar o conjunto das transformações lineares do espaço vetorial E em \mathbb{R} e o conjunto E^* representa os funcionais lineares $\varphi:E\to\mathbb{R}$, chamando-se o espaço vetorial dual de E.

Vetor É um elemento do espaço vetorial E. Pode ser interpretado como uma grandeza geométrica ou física que possui direção e magnitude.

Covetor É um elemento do espaço dual E^* . Ele atua como uma aplicação linear que associa a cada vetor um número real.

Usualmente, vetores são representados na forma matricial em colunas, enquanto os covetores aparecem na forma matricial em linhas (ou seja, na forma transposta).