Introdução à Álgebra Linear

Kelvin Rafael Duarte Machado

agosto de 2025

Introdução

Esta apostila foi escrita com o objetivo de servir como guia de revisão do conteúdo de Álgebra Linear. O propósito foi tomar definições de forma rigorosa, porém sem a preocupação em realizar provas e demonstrações, exceto onde julgou-se necessário para melhor clareza.

Os conteúdos aqui abordados visam servir de referência para aulas ministradas em ambiente virtual. Espera-se que após a apresentação destes conteúdos, o leitor tenha capacidade de acompanhar outros cursos que façam uso da álgebra linear, como aplicações na mecânica, engenharia, física e computação.

Para a confecção da apostila foi utilizado um editor de texto em LATEX.

Quaisquer dúvidas, sugestões ou críticas, entre em contato através do email: kelvin@kelvinrafael.com.

Kelvin Rafael Duarte Machado Santa Maria, agosto de 2025.

Espaço vetorial

2.1 Definição de espaço vetorial

Um espaço vetorial E é um conjunto cujos elementos são chamados de vetores, no qual são definidas duas operações: a adição, na qual para cada par de vetores u e v faz corresponder um terceiro vetor $u+v\in E$ chamado soma de u e v e a multiplicação por um número real, $\alpha\in\mathbb{R}$ por $v\in E$, que faz corresponder o vetor $\alpha.v=\alpha v$. Essas operações devem satisfazer para quaisquer $\alpha,\beta\in\mathbb{R}$ e $u,v,w\in E$, os axiomas apresentados a seguir:

- comutatividade: u + v = v + u;
- associatividade: (u+v)+w=u+(v+w);
- vetor nulo: existe um vetor $0 \in E$ chamado vetor nulo, ou vetor zero, tal que v + 0 = 0 + v = v para quaisquer $v \in E$;
- inverso aditivo: dado um vetor $v \in E$, existe um vetor $-v \in E$, tal que -v + v = v + (-v) = 0;
- distributividade: $(\alpha + \beta)v = \alpha v + \beta v \in \alpha(u+v) = \alpha u + \alpha v$;
- multiplicação por 1: 1.v = v.

2.2 Subespaço vetorial

Um subespaço de E é um subconjunto $F \subset E$ com as seguintes propriedades:

- $0 \in F$;
- Se $u, v \in F$ então $u + v \in F$;
- Se $v \in F$, então para todo $\alpha \in \mathbb{R}$, $\alpha v \in F$.

Bases

3.1 Combinação linear

Uma combinação linear de um conjunto de vetores v_1, \ldots, v_n em V é um vetor na forma:

$$v = a_1 v_1 + \dots + a_n v_n$$

Onde: $a_1, \ldots, a_n \in \mathbb{R}$

3.2 Subespaço gerador de E

O conjunto de todas as combinações lineares dos vetores v_1, \ldots, v_n em V é chamado de subespaço gerador de V ou, span de V, denotado por $S(v_1, \ldots, v_m)$. Em outras palavras:

$$S(v_1, \ldots, v_m) = \{a_1v_1 + \cdots + a_mv_m : a_1, \ldots, a_m \in \mathbb{R}\}$$

3.3 Vetores linearmente independentes

Seja E um espaço vetorial. Diz-se que um conjunto $X \subset E$ é linearmente independente (LI), quando nenhum vetor $v \in X$ é combinação linear de outros elementos de X.

Se um conjunto X é linearmente independente no espaço E e $\alpha_1 v_1 + \cdots + \alpha_m v_m = 0$ com $v_1, \ldots, v_m \in X$ então $\alpha_1, \ldots, \alpha_m = 0$.

Sejam v_1, \ldots, v_m vetores não nulos do espaço vetorial E. Se nenhum deles é combinação linear dos anteriores ou posteriores, então o conjunto $X = \{v_1, \ldots, v_m\}$ é L.I..

3.4 Base

Uma base de um espaço vetorial E é um conjunto $B \subset E$ linearmente independente que gera E.

Assim, todo vetor $v \in E$ se exprime, de modo único, como combinação linear $v = \alpha_1 v_1 + \dots + \alpha_m v_m$ de elementos v_1, \dots, v_m da base B. Se $B = \{v_1, \dots, v_m\}$ é uma base de E e $v = \alpha_1 v_1 + \dots + \alpha_m v_m$, então os números $\alpha_1, \dots, \alpha_m$ são chamados coordenadas do vetor v na base B.

3.5. Dimensão 4

3.4.1 Base canônica

Os vetores:

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1)$

Constituem um conjunto de geradores do espaço \mathbb{R}^n , linearmente independentes, sendo, portanto, uma base deste espaço.

3.5 Dimensão

Diz-se que o espaço vetorial E tem dimensão finita quando admite uma base $B = \{v_1, \ldots, v_n\}$ com um número finito n de elementos. Este número, que é o mesmo para todas as bases de E, chama-se a dimensão do espaço vetorial $E: n = \dim E$.

Transformações lineares

Sejam E, F espaços vetoriais. Uma transformação linear $A: E \to F$ é uma correspondência que associa a cada vetor $v \in E$ um vetor $A(v) = A \cdot v = Av \in F$ de modo que valham para quaisquer $u, v \in E$ e $\alpha \in \mathbb{R}$, as relações:

$$A(u+v) = Au + Av,$$

$$A(\alpha \cdot v) = \alpha \cdot Av$$

O vetor Av chama-se a imagem de v pela transformação A.

Núcleo e imagem

A imagem de A é o subconjunto $Im(A) \subset F$, formado por todos os vetores $w = Av \in F$ que são imagens de elementos de E pela transformação A.

O núcleo da transformação $A:E\to F$ é o subconjunto N(A) dos vetores $v\in E$ tais que Av=0.

Produto interno

Produto interno é uma função $E \times E \to \mathbb{R}$ que associa a cada par de vetores $u, v \in E$ um número real $\langle u, v \rangle$, chamado de produto interno de u por v.

- bilinearidade: $\langle u + u', v \rangle = \langle u, v \rangle + \langle u', v \rangle$
- comutatividade: $\langle u, v \rangle = \langle v, u \rangle$
- positividade: $\langle u, u \rangle > 0$ se $u \neq 0$.

O número não negativo $|u|=\sqrt{\langle u,u\rangle}$ chama-se norma ou o comprimento do vetor u.

Quando |u|=1 diz que o vetor $u\in E$ é um vetor unitário.

Seja $E = C^0([a,b])$ o espaço vetorial cujos elementos são as funções contínuas $g, f : [a,b] \to \mathbb{R}$. Um produto interno em E pode ser definido pondo:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$$

Neste caso, a norma da função é:

$$|f| = \sqrt{\int_a^b f(x^2) \, dx}$$

Adjunta

A adjunta de A deve ser uma transformação linear $A^*:F\to E$ tal que, para $v\in E$ e $w\in F$ quaisquer se tenha:

$$\langle Av, w \rangle = \langle v, Aw \rangle$$

Subespaços invariantes

Diz-se que um subespaço vetorial $F \subset E$ é invariante pelo operador $A: E \to E$ quando $A(F) \subset F$, isto é, quando a imagem de qualquer vetor $v \in F$ é ainda um vetor em F.

Um vetor $v \neq 0$ em E chama-se um autovetor do operador $A: E \to E$ quando existe $\lambda \in \mathbb{R}$ tal que:

$$Av = \lambda v$$

O número $\lambda \in \mathbb{R}$ por sua vez, chama-se autovalor do operador A quando existe um vetor não nulo $v \in E$ tal que $Av = \lambda v$.

Operadores auto-adjuntos

Um operador linear $A:E\to E$, em um subespaço vetorial munido de produto interno, chama-se auto-adjunto quanto $A=A^*$, ou seja, quanto $\langle Au,v\rangle=\langle u,Av\rangle$ para quaisquer $u,v\in E$.

Operadores ortogonais

Dada uma matriz $\mathbf{u} \in M(m \times n)$ cujas n colunas formam um conjunto ortonormal em \mathbb{R} , chama-se uma matriz ortogonal.

Operadores normais

Um operador linear $A:E\to E$ chama-se normal quando comuta com seu adjunto. Isto é, quando $AA^=A^*A$.

Formas quadráticas

Determinantes

Capítulo 14 Polinômio característico

Espaços vetoriais complexos

Capítulo 16 Métodos numéricos